LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2013

MT 4812 - PARALLEL INTERCONNECTIONS NETWORKS

Date : 30/04/2013
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

ANSWER ALL QUESTIONS

I (a) Define interconnection network and show how it may be modeled by a simple graph.
[OR]
(b) What type of graphs is used to model cross-bar switches? Define a strongly connected graph with an example.
(c) Define an embedding of a graph G into H . Explain the parameters (i) dilation, (ii) congestion, (iii) dilation-sum, and (iv) congestion-sum of an embedding. For embedding f show below determine each of the parameters.

[OR]
(d) (i) Let G be a connected undirected graph with order $(n \geq 3)$ and the maximum degree $d \geq 2$. Then prove that $d(G) \geq\left\{\begin{array}{cl}\left\lfloor\frac{1}{2} n\right\rfloor & \text { for } d=2 \\ {\left[\log _{(d-1)} \frac{n(d-2)+2}{d}\right\rceil} & \text { for } d \geq 3\end{array}\right.$
(ii) Discuss the role of planar graphs in the layout of VLSI circuits.

II (a) Let G be a graph of order n . Then prove that for any $\theta \in \operatorname{Aut}(G)$, its restricition to X is an isomorphism between $\mathrm{G}[\mathrm{X}]$ and $\mathrm{G}[\theta(X)]$ for any non-empty $X \subseteq V(G)$ where $\theta(X)=\{y \in$ $V(G): y=\theta(x), x \in X\}$
[OR]
(b) Prove that the converse of $\overleftarrow{C_{\Gamma}(S)}$ of a cayley graph $C_{\Gamma}(S)$ is also a cayley graph. Also list 3 properties of a cayley graph.
(c) Define a line graph of an undirected graph. Let G be a simple undirected graph and $L(G)$ be the line graph of G. Prove the following:
(i) $\mathrm{L}(\mathrm{G})$ is simple and $v(L(G))=\varepsilon(G)$.
(ii) $d_{L(G)}(e)=d_{G}(x)+d_{G}(y)-2$ for any $e=x y \in E(G)$, and hence $\quad \delta(L(G)=\xi(G)$. In particular, $\mathrm{L}(\mathrm{G})$ is $(2 \mathrm{~d}-2)$-regular if G is d-regular.
(iii) For any $x \in V(G)$, the subgraph of $\mathrm{L}(\mathrm{G})$ induced by the edges incident with $x \in V(G)$ is a complete graph.
(iv) $\varepsilon(L(G))=\frac{1}{2} \sum_{x \in V(G)}\left(d_{G}(x)\right)^{2}-\varepsilon(G)$.
(v) For a connected undirected graph $G, L(G) \cong G$ if and only if G is an undirected cycle.
[OR]
(d) Define cayley graph. Prove that a cayley graph is regular and does not have a loop. Generate the cayley graph when $G=\{0,1,2,3,4,5,6$,$\} is the additive group of modulo 7$ and $s=\{1,2,4\}$.

III (a) Define Hypercubes. Also draw Q_{4}
[OR]
(b) Write 5-bit Gray code G_{5}.
(c) (i) For any given vertex x of Q_{n}, prove that there exists a unique vertex y such that the distance $d\left(Q_{n} ; x, y\right)=n$. Also prove that there are n internally disjoint (x, y) - paths of length n.
(ii) Let x and y be two vertices in Q_{n} and $d\left(Q_{n} ; x, y\right)=d$. Then prove that there exist a d dimensional subcube in Q_{n} in which there are d internally disjoint $\quad(x, y)$ - paths of length d. Also prove that there exist n internally disjoint $\quad(x, y)$ - paths of length d in Q_{n} such that d of which are of length d, otherwise of length $d+2$.

$$
(7+8)
$$

[OR]
(d) (i) Prove that $v\left(G_{1} \times G_{2}\right)=v\left(G_{1}\right) v\left(G_{2}\right)$ and $\varepsilon\left(G_{1} \times G_{2}\right)=v\left(G_{1}\right) \varepsilon\left(G_{2}\right)+v\left(G_{2}\right) \varepsilon\left(G_{1}\right)$.
(ii) Prove that $2 T_{n-1}$ can be embedded into Q_{n+1} with dilation $1 . \quad(8+7)$

IV (a) Draw $B(2,3)$ and construct an euler circuit in it.

> [OR]
(b) Define circulant networks and draw $G(8 ; \pm\{1,2,3\})$
(c) (i) Write the procedure to construct $\mathrm{CCC}(\mathrm{n})$ from $\mathrm{WBF}(\mathrm{n})$. Also construct $\mathrm{CCC}(3)$ from $\mathrm{WBF}(3)$
(ii) Let ρ_{m} be a minimum routing in a wheel W_{7}. Find $\pi\left(W_{7}, \rho_{m}\right) . \quad(9+6)$
[OR]
(d) Define De Bruijin networks using d-ary sequence, line graphs and arithmetic method. Prove that these three definitions are equivalent.

V (a) Write a note on forwarding index of routing.
[OR]
(b) Prove that $\tau\left(Q_{n}\right)=2^{n-1}(n-2)+1$.
(c) Let G be a strongly connected digraph n, prove that
$\frac{1}{n} \sum_{y \in V} \sum_{x(\neq y) \in V}(d(G ; x, y)-1) \leq \tau(G) \leq(n-1)(n-2) \quad$ Also prove that the upper bound can be attained and, the lower bound of $\tau(G)$ can be attained if and only if there exists a minimum routing ρ_{m} in G for which the load of all vertices is the same.
[OR]
(d) Prove that $P(n, 2)=\left\lceil\frac{n}{3}\right\rceil$ if $n \geq 4$.
**

